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Abstract 
Thermal contact resistance under general time-dependent 

thermal load is investigated in this study. Assuming known 
number of contacts points, and the average surface area of 
each contact, the focus of this study is on the thermal aspect of 
contact resistance, i.e. spreading/constriction resistance at the 
contact point. A general analytical solution for thermal 
spreading/constriction resistances of a time-dependent circular 
source on a finite circular cylinder with uniform side and end 
cooling is presented. The solution is applicable to a general 
axisymmetric heat flux distribution, including both isoflux and 
isothermal distributions. The time response of the flux tube 
under different geometrical and boundary conditions is 
investigated and the result are shown. The results are also 
compared to, and successfully verified by an independent 
numerical simulation. 

Keywords 
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1. Introduction 
Thermal management of electronics and power electronics 

has vast applications in several industries such as; telecom 
industry (datacenters and outdoor enclosures), automotive 
industry (conventional vehicles, hybrid vehicles, electric 
vehicles, and fuel cell vehicles), renewable energy systems 
(solar panels and wind turbine power electronics), aerospace 
industry, and light-emitting diode (LED) industry. Efficient 
thermal management of electronics is essential for optimum 
performance and durability. About 55% of failures in 
electronics during operation have a thermal root [1]. The rate 
of failures due to overheating nearly doubles with every 10°C 
increase above the operating temperature [2]. Considering the 
increasing functionality and performance of electronic devices 
and the ever increasing desire for miniaturization in the 
industry, thermal management has become the limiting factor 
in the development of such devices, [3–5], and reliable low-
cost cooling methods are more and more required. The main 
goal of electronics cooling is the effective transfer of heat 
from source, e.g. IGBTs or MOSFETs to the ambient 
heatsinks or other cooling systems. The effectiveness of this 
procedure highly depends on the system’s total thermal 

resistance, which is composed of discrete thermal resistances 
on the path of heat from source to ambient. One of the major 
resistances is thermal contact resistance (TCR). Heat transfer 
across an interface formed by two contacting solid bodies is 
usually accompanied by a measurable temperature difference 
because there exists a thermal resistance to heat flow in the 
region of the interface. It is a well-known fact that all 
engineering surfaces exhibit waviness and roughness, as the 
result of the inherent action of production processes and 
warping strains. As a result of these surface asperities, when 
two solid bodies are brought together under a load, there will 
be intimate contact at many small discrete spots, and a gap 
will exist in the regions of no real contact (see Figure 1). The 
gap region will normally be occupied by a fluid, such as air. 

 
Figure 1: Schematic of contact geometry when two solid 

bodies are brought together. 
The brief review of Figure 1, clearly shows that the 

contact phenomenon is quite complex, since there are many 
parameters such as: apparent contact pressure, thermal 
conductivity of the solid bodies, surface roughness and 
waviness, material elasticity and plasticity, number and 
geometry of the contact spots, etc., that affect the transport of 
heat across the interface. As such, it is necessary to separate 
this phenomenon into three principal problems: i) mechanical 
problem, ii) thermal problem, and iii) metrology: surface 
description and measurement. It would be wrong to believe 
that only one theory could predict the thermal resistance over 
all possible ranges, as each area requires special expertise and 
considerations in order to evaluate the relative importance of 
one parameter over another.  For more introductory 
information on mechanical and metrology aspects of the 
problems, the reader is invited to see Yvanovich et al. work 
[6] on calculating the interface resistance. The focus of this 
study is the thermal problem, in which the major part is the 
heat spreading/constriction resistance at the contact spots (see 
Figure 2).  In this study we assume that the surface 
characteristics are measured and the mechanical problem is 

978-1-5090-2336-3/16/$31.00 ©2016 IEEE                                15                                               32nd SEMI-THERM Symposium

mailto:mahmadi@sfu.ca
mailto:mfakoorpakdaman1@sfu.ca
mailto:mbahrami@sfu.ca


Ahmadi et al., Analytical Investigation of Thermal Contact 
 

32nd IEEE SEMI-THERM Symposium 
  

 

solved through Hertzian contact theory or any other 
mechanical model [7], meaning that the number and the 
average surface area of contact points are known. This study 
focuses on solving the thermal aspect of the problem, i.e. 
spreading/constriction resistance in one contact point. As 
shown in Figure 2, due to less resistance through the contact 
points in an solid-solid interface, the heat transfer mainly 
occurs through these area, which causes spreading/constriction 
of constant heat flux lines. This geometry-imposed bottleneck 
causes the heat not to distribute uniformly in the system and 
introduces an extra resistance to the system. There are other 
mechanisms for the interfacial heat transfer such as: radiation 
between the gap surfaces and conduction through the fluid 
inside the gaps, which are not considered in this study to 
simplify the problem. The role of radiation and conduction 
through the gaps become more important at considerably high 
temperatures and high fluid pressures, respectively, which is 
not the case for many engineering applications, specifically 
electronics cooling. So the focus of this paper is 
spreading/constriction resistance as the major thermal 
contributor to the thermal contact resistance (TCR). In this 
study, the geometry of the contact spots is assumed to be  
circular (Figure 2); however, other geometries such as ellipse, 
rectangle and line are also possible to be formed in the contact 
area. 

 
Figure 2: constriction and spreading of at the contact areas 

of the surface interface. Magnified region is a representative 
unit cell of a contact point with circular contact area. 

Many researchers studied different aspects of contact 
resistance via. spreading/constriction resistances of a circular 
area subjected to different boundary conditions [8,9]. The 
solutions have mainly been reported for steady-state heat 
conduction into the four regions, defined as: i) isotropic half-
space, ii) semi-infinite circular flux tube, iii) thin disk of 
infinite extent, and iv) finite length circular cylinder with 
different film coefficients imposed on the side and end 
surfaces. Mikic and Rohsenow [10] obtained analytical 
relations for spreading resistances for a circular heat source on 
one end of a semi-infinite flux tube and a finite length finite 
flux tube. They reported solutions for the isoflux source and 
the quasi-isothermal source based on the equivalent isothermal 
flux distribution for the insulated boundary condition on the 

side. Yovanovich [11] developed a general analytical solution 
for the dimensionless steady-state spreading resistances for a 
general, axisymmetric heat flux distribution, q(r), over a 
circular source on a semi-infinite flux tube. In another study, 
Yovanovich [12] presented an integral method for finding the 
spreading resistances of single planar isoflux sources of 
arbitrary shape placed on isotropic half-space. Yovanovich 
and Burde [13] used an integral method [12] to find the 
dimensionless spreading resistances of several non-symmetric, 
isoflux sources based on the centroid and average temperature 
basis. They used the square root of the source area as the 
characteristics length scale for nondimensionalization, and 
reported that heat sources with the same area and aspect ratio, 
e.g. a circle and a square, had spreading resistances that 
differed by less than 1–2%. Martin et al. [14] used the method 
of moments to find spreading resistances for several source 
geometries such as circle, square and equilateral triangle. 
They obtained numerical results for isothermal and isoflux 
boundary conditions. Yovanovich [15] presented a general 
solution for thermal spreading resistances of a circular source 
on a finite circular cylinder with uniform side and end cooling. 
He showed that several special cases presented by many 
researchers arise directly from his general solution. More 
extensive literature review on steady state 
spreading/constriction resistances can be found on [15].  

A number of studies have also focused on transient 
spreading/constriction resistance within isotropic materials. 
Turyk and Yovanovich [16] reported the analytical solutions 
for transient spreading resistances within semi-infinite circular 
flux tubes and two-dimensional channels. Yovanovich [17] 
used surface element method to report approximate solution to 
transient temperature rise of arbitrary contacts with uniform 
flux. Kadambi and Abuaf [18] used the method of separation 
of variables (SOV) to report the transient temperature 
distribution in a finite circular cylinder with insulated side and 
uniform end cooling, and a circular constant heat source on 
top. 

This brief review of the pertinent literature shows that in 
spite of over six decades of research on systems consisting of 
a single heat source on substrates, time dependent contact 
resistance, thus spreading/constriction, has not been 
investigated to date.  Considering the recent turn of industry 
towards sustainable energy resources, time-dependent thermal 
studies of energy systems seem to become an inevitable topic 
in engineering [2]. Resources such as wind and solar energy 
have a very time-dependent behavior in term of availability. 
Electric vehicles as another example, due to the highly time-
varying power demand of driving cycles, go through time-
dependent energy cycles [19]. This change of 
available/demanded energy with time, imposes a time-varying 
load cycle on all components including the electronics and 
consequently electronics cooling systems [20,21]. Therefore, 
the thermal contact resistance which in this study gets 
narrowed to spreading/constriction resistances, as one of the 
major barriers in heat transfer path inside the cooling systems, 
is required to be studies under time-varying thermal loads.  To 
address this shortcoming, this study aims to present a new 
general analytical solution for time-dependent 
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spreading/constriction resistance. This study is the extension 
of Yovanovich’s work [15] by assuming the boundary source, 
as a function of both time and space. This makes the presented 
solution a more general case, being applicable to calculation 
of spreading/constriction resistance under time-varying 
thermal load. The general solution will give the time-
dependent temperature response of the system to the boundary 
condition at different locations. It is worth mentioning that due 
to the analogy between the heat transfer and charge transfer in 
the solids, the same solutions can be used for the concept of 
electrical contact resistance (ECR). In fact, the solution to this 
problem can be applied to any diffusion problem, including 
the interface resistance against the mass transfer. To define the 
problem geometry and the boundary conditions, the magnified 
section in the Figure 2, can be shown in more mathematical-
friendly form, as shown in Figure 3. This geometry is also 
known as “flux tube”. More details on the solution domain, 
boundary conditions, and problem definition are brought in 
section 2.  

 
Figure 3: Schematic of the problem; finite flux tube with 

side and end cooling. 

2. Problem definition 
The geometry shown in Figure 3, represents one contact 

spot at the interface between two mating surfaces. It consists 
of a circular source of radius a on one end of a finite cylinder 
of radius b, with thickness l, and thermal conductivity k. The 
sides, r=b, and the end z=l are cooled by a fluid at fixed 
temperature Tf through uniform, but different heat transfer 
coefficients h and he, respectively. It should be noted that in a 
contact resistance problem, there is no side cooling. However, 
to make the solution more general, we considered the side and 
end cooling. The side or end boundary conditions can be 
changed to insulated at the limiting case of h approaching 
zero. The axisymmetric time-depending heat flux over the 
source area has the following general form 

 
 

 
2

2

1
, 1 1 cos( ) 0 /

Q rq r t t for r a b
aa








   
      

   

 (1) 

where Q is the total heat transfer rate from the source into the 
system, and μ is the heat flux distribution parameter. Three 
interesting distributions are obtained when μ = -1/2, 0, 1/2. 
The flux distribution corresponding to μ = -1/2 has a minimum 
at the center (r=0) and is unbounded at the edge of the heat 
source (r=a). This flux distribution is frequently used to 
approximate an isothermal source area [22]. The distribution 
corresponding to μ = 0 represent an isoflux distribution at 
steady-state. The third flux distribution corresponding to μ = 

1/2 is parabolic; it has a maximum at the center and goes to 
zero at the edge of the source area. In this study, cosine 
function is chosen to represent time-dependency of the 
boundary condition. It should be noted that using cosine 
Fourier transform any kind of time-dependent function can be 
re-written in the form of a cosine function. All the boundary 
conditions of this problem are tried to be selected as general 
as possible to cover a whole range of possible scenarios. For 
example, by setting the heat transfer coefficient, h, at the side 
to zero, the insulated boundary condition can be achieved; at 
the other limit where coefficient, he, at the bottom approaches 
infinity, the constant temperature boundary condition at z = L 
can be achieved. 

3. Governing equation, initial and boundary conditions 
The governing differential equation for the axisymmetric 

temperature rise θ(r,z,t) = T(r,z,t) - Tf is 
2

2

1 1 , 0 r b, 0 z lr
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 (2) 

The initial and boundary conditions are 
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(3) 

where Bi=hb/k and Bie=heb/k are the Biot numbers on the side 
and the end of the cylinder, respectively. 

3.1. Steady-state solution 
Using method of separation of variable (SOV) and 

Fourier-Bessel expansion, Yovanovich [15] reported the 
steady state solution with boundary condition on the circular 
source of, 

 
  2

2

1
1

Q brq r
a a







   
   

   

 (4) 

and presented the temperature distribution inside the cylinder 
in the following form: 

   0
1
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r z A J z z    




     (5) 
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
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 (6) 

where τ = l/b, and eigenvalues, λn, are the positive roots of the 
characteristic equation: 

   1 0n n nJ Bi J    (7) 
with δn = b λn and J0 and J1 are Bessel function of first kind of 
order zero and one respectively. An is defined as: 

   

    
1

2 2 2
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n
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  
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 (8) 

with ε = a/b and Γ being the Gamma function. 
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3.2. Transient solution 
Before solving the problem with periodic flux at the 

boundary, we need to solve the transient problem with the 
following boundary condition at z = 0: 

 
  2

2

1
1

Q brq r
a a







   
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   

 (9) 

The transient solution related to the system start up, where 
the response of the system to the applied boundary condition 
is a matter of interest, from the beginning of the process until 
the steady-state condition is reached. The rest of boundary 
conditions and the governing equation will remain unchanged 
as appeared in Eq. 3. We start solving the problem by 
assuming that the final solution θ(r,z,t) is separable into a 
steady-state and a transient part. 

( , , ) ( ,z, t) ( , )t sr z t r r z     (10) 
The steady-state temperature, θs, is reported in section 3.1, 

Eq. 5. By substituting Eq. 10 into Eq. 2, the governing 
equation can be re-written as 

2
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1 1t t tr
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Boundary conditions for the transient solution, θt, can be 
rearranged as: 
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(12) 

The method of separation of variables can be employed to 
solve Eq. 11 subjected to boundary conditions, Eq. 12. 

       , , tt r z r Z z t     (13) 
To solve for ϒ(r) and Z(z) we use an Eigenfuction 

expansion method [23]. Auxiliary equations can be written in 
both r-direction and z-direction: 

r-direction 21 d dr
r dr dr


 

   
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 (14) 

z-direction 
2

2
2

d Z Z
dz

   (15) 

After applying the boundary conditions to the auxiliary 
Eqs. 14 and 15, and using the governing Eq. 11, functions R(r) 
and Z(z) can be found as: 
r-direction    0 nr J r   (16) 
z-direction    cos mZ z z  (17) 
where the eigenvalues λn and γm are the positive roots of Eqs. 
18 and 19, respectively: 
r-direction    1 0n n nJ BiJ    (18) 

z-direction  tanm m eBi     (19) 
with ηm = b γm. Substituting Eqs. 16 and 17 into Eq. 11, Λ(t) 
can be found as 
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and consequently θt(r,z,t) will be 
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Substituting the initial condition, Bmn: 
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(22) 

3.3. General time-dependent solution 
After finding the transient solution, Duhamel’s theorem 

[23] can be used to find the general solution for the cosine 
form of the boundary condition: 
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After applying Duhamel’s theorem and integrating over 
time, the final form of the solution will be 
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(24) 

3.4. System thermal contact resistance 
The total resistance of the system is defined with respect to 

the mean temperature rise of the source area 
and 

avg
sysR

Q


  (25) 

where Rsys is the flux tube total resistance. The total resistance 
is equal to the spreading resistance plus the one-dimensional 
conduction resistance along the tube: 

2sys s
lR R

k b
   (26) 

with Rs being spreading resistance. 

4. Numerical simulation 
An independent finite element numerical simulation was 

prepared in COMSOL Multiphysics to validate the results of 
the present analytical solution. Different number of mesh 
elements was tested and the results were compared for the 
maximum local temperature (at r = 0 and z = 0) to ensure 
mesh independency. Accordingly, choosing a mesh size of 
2×104, we found a maximum 2% deviation in the temperature 
values compared to the simulation of cylinder with a mesh 
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number of 3×104. Similarly, the maximum temperature for the 
simulation with 1×104 mesh elements deviated up to 1.5% as 
compared to those from the finest mesh size. Therefore, we 
chose a mesh size of 2×104 elements considering that it was 
sufficient for the numerical investigation purposes. 

The comparison between the analytical solution, Eq. 24, 
and numerical results is shown in Figure 4. The values shown 
in Figure 4 are for a case with Bi = 0.0001that is associated 
with insulated boundary condition on the side of cylinder. 
Several other simulations under different boundary conditions 
are also performed and compared them the analytical solutions 
for further validation. The boundary conditions and 
thermophysical properties are shown in Figure 4. The 
maximum relative difference between the numerical and 
analytical results is less than 5%. 
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Figure 4: A comparison between the analytical solution 

and numerical data, with maximum, minimum, and average 
relative differences of 4.9%, 0.8%, and 2.1% respectively. 

5. Results and discussion 
Thermal lag; Figure 5 shows the imposed source heat flux 

and the temperature response on the axis at the bottom of the 
cylinder. As shown in Figure 5, there is a phase shift between 
the imposed boundary condition and the thermal response of 
the flux tube. This lag can be interpreted as the thermal inertia 
effect, i.e., density times specific heat capacity (ρ.cp).  

 

Figure 5: Effect of thermal inertia on tube flux response,; 
the temperature at r = 0, z = l, and the source heat flux 

imposed. 
Effect off aspect ratio ε: Figure 4 shows the effect of aspect 

ratio, ε = a/b. This can also be viewed as the ratio of real to 
nominal contact area at the contacting surfaces. As per 
Bahrami et al. [7], in most engineering applications, the real 
contact area is less than 2% of the nominal contact area. As it 
is expected, smaller aspect ratios cause more resistance for 
heat transfer which leads to an increase in spreading resistance 
and consequently the total resistance. 

 
Figure 6: The effect of ε = a/b on spreading resistance of 

the system. 
Effect of Bie: Average temperature at the bottom of the flux 

tube,  z=l as a function of time is shown in Figure 7. As 
expected, higher values of Biot number cause less temperature 
difference between the bottom of cylinder and the ambient. 
Using a convective cooling boundary condition at the side and 
the end of cylinder makes the solution more general, since 
very low values of Biot number can resemble the adiabatic 
boundary condition, q=0, and very high values of Biot can 
simulate the constant temperature boundary condition, T=Tf. 

 
Figure 7: Average temperature at z = l versus time, the 

effect of Bie on average end temperature. 
Effect of frequency: The effect of  frequency of the source 

heat flux is studied at Figure 8. Two asymptotes can be 
identified, when the angular frequency approaches to its 
limiting cases. Both asymptotes resemble the solution to the 
step function boundary condition, but with different 
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amplitudes. At very small frequencies when ω approaches 
zero, the source heat flux becomes: q(r)=[1+cos(ωt)], the 
temperature response would be in the form of the response to 
a step function but with amplitude twice as large as the 
amplitude of the original source boundary condition. At the 
other limit, at very large frequencies due to thermal inertia, the 
temperature response cannot follow the fluctuations at the 
source, thus its behaviour resembles the response to a step 
function with amplitude identical to the original boundary 
condition. 

 
6. Figure 8: The effect of angular frequency on the time 

response of system. 

7. Conclusion 
For the first time in the literature the time-dependent 

spreading/constriction resistances is studied for circular source 
on a finite circular cylinder with uniform side and end cooling. 
A general boundary condition was used for the circular source, 
to be able to resemble both heat flux and temperature 
boundary condition. The problem is solved for the general 
convective cooling conditions, which allows the modification 
of the solution for insulated and constant temperature of side 
and end, by letting the heat transfer coefficient go to zero 
(very small values) and infinity (very large values) 
respectively. Combined with a mechanical model to account 
for the number and the actual surface area of contact points at 
the interface, the presented thermal solution can provide a 
general analytical solution for calculation of thermal contact 
resistance under arbitrarily time-varying thermal load and 
various boundary conditions. Our study shows that the first 
sixty term of the series are enough for accurate results up to 4 
decimal digits. An independent numerical simulation is also 
prepared, and the results from analytical solution are 
successfully verified against numerical data. Parametric study 
was performed on the important parameters and the following 
highlights were observed; 

- There is a time lag between the fluctuations at 
boundary and the temperature response of the system. The 
higher the thermal inertia, ρ.cp, the bigger the thermal lag. 

- The ratio between the source area and the cylinder 
cross section area affects the spreading resistance 
significantly. The higher the value of ε = a/b, the higher the 
value of spreading resistance. 

- At very low frequencies the system response would 
change to the temperature response to a step function 
boundary condition, since the effect of fluctuations are 
negligible. 

- At very high frequencies the thermal inertia prevents 
the system from following the fluctuations at the boundary and 
the system response would get closer to response to a step 
function. 
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